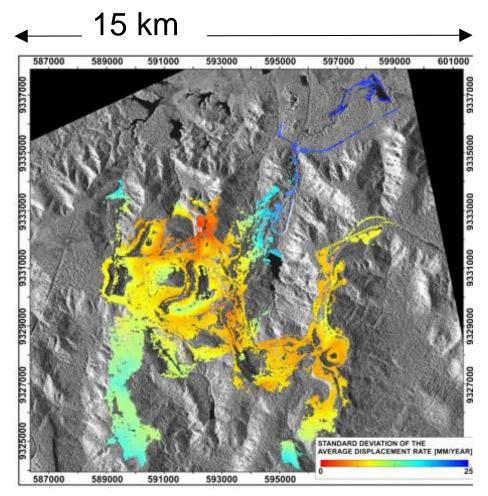
A Geosynchronous SAR Swarm for Continuous Observations

Andrea Monti Guarnieri, Fabio Rocca DEIB, Politecnico di Milano

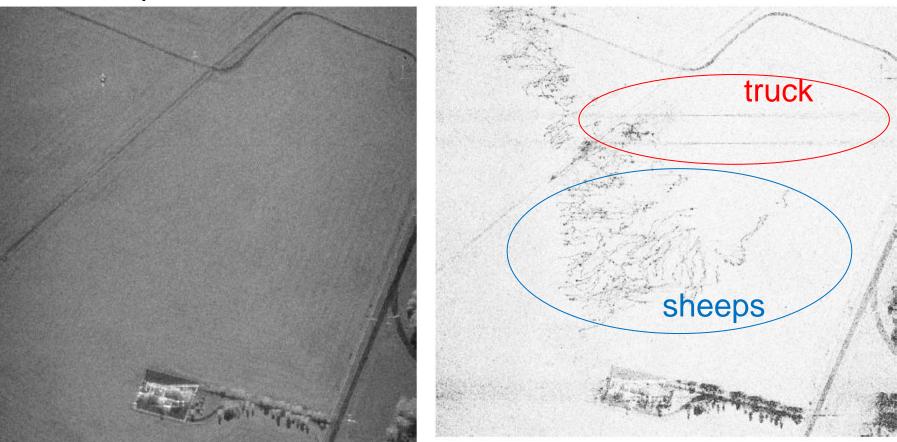
Abstract


- RADAR applications: the value of revisit and resolution
- Options for short revisit SAR swarm in LEO-MEO-GEO
- The geostationary SAR swarm
- Solutions and performance evaluation

DInSAR, landslides and early warning

http://www.ksl.com/index.php?page=1&sid=24748916&nid=460

UTAH, APR. 2013. The biggest landslide ever in US: 165 millions tons Predicted by GB RADAR

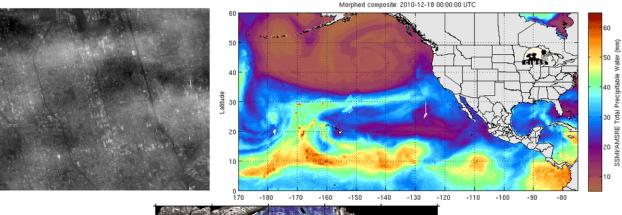


Paradella, Ferretti et. Al Mapping surface deformation in open pit iron mines of Carajás Province (Amazon Region) using an integrated SAR analysis

DInSAR

Coherent change detection

Ampltitude

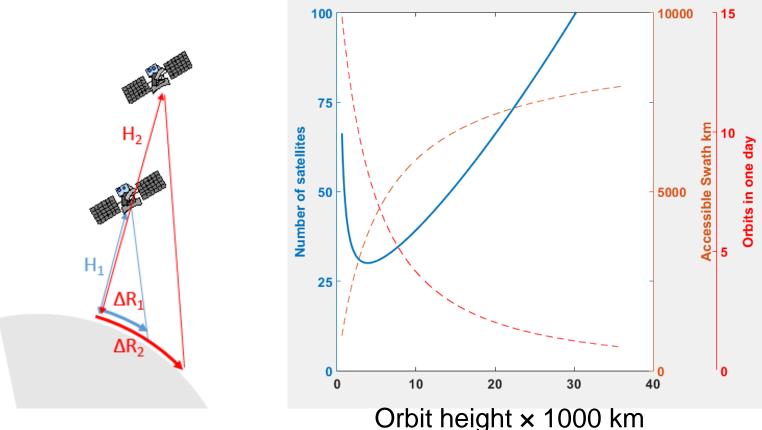


Coherence (10 mins)

Coherent Change Detection: Theoretical Description and Experimental Results Mark Preiss and Nicholas J. S. Stacy Intelligence, Surveillance and Reconnaissance Division Defence Science and Technology Organisation

SAR applications

Water-vapor & soil moisture for Numerical Weather prediction

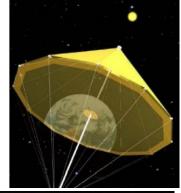

Modelling **glacier** hydraulics and rheology.

Flooding

Synthetic Aperture Radar is unique for all-day-all-weather monitoring & surveillance

Optimal orbit heigh for shortest revisit

The swath increases with height, but the velocity reduces. The minimum of 30 satellites is at MEO, 4000 km, for 1 hour revisit, by assuming 400+400 km accessible swath (L+R).

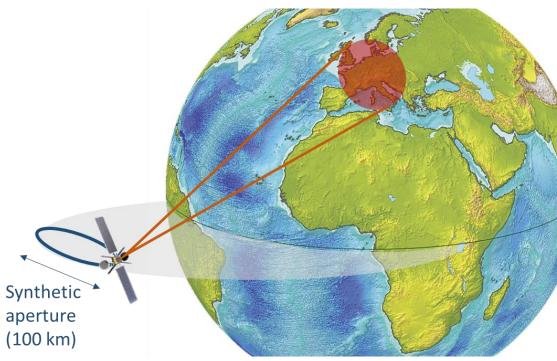


[Madsen, Chen, Edelstein Radar options for global earthquake monitoring] SET-222 Specialists Meeting on "Swarm centric solution for Intelligent Sensor Networks" 8

Geo-synchronous SAR: continental coverage

- Faster revisit is traded for access (no more world-wide)
- The combination of short image time (1 min and huge swath demands for challenging technologies
- The constellation is extremely expensive
- The orbit crosses the graveyard orbit

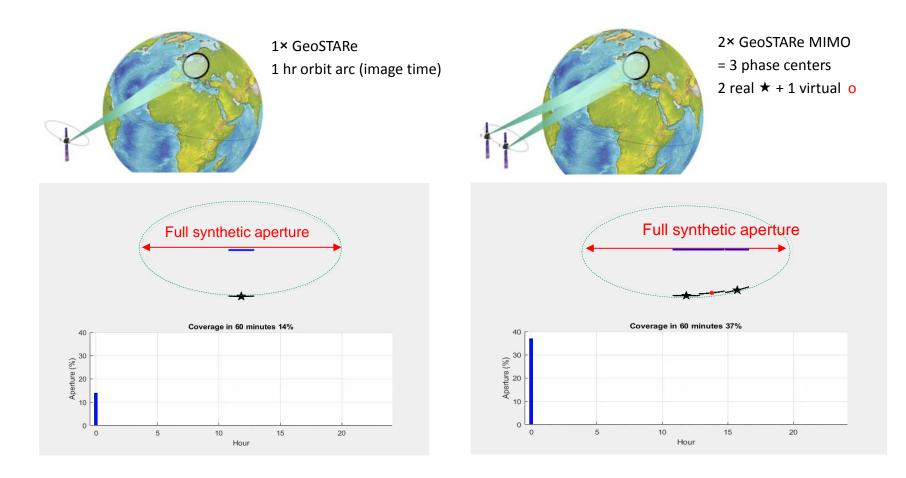
Mass Estimate 5 years 10 years 20 years $2700 \text{ kg} (3 \text{ kg/m}^2)$ $1800 \text{ kg} (2 \text{ kg/m}^2)$ $900 \text{ kg} (1 \text{ kg/m}^2)$ Antenna Support electronics 200 kg 50 kg 25 kg Shared with antenna Shared with antenna Solar panels 200 kg Platform (30% of PL) 870 kg 230 kg 560 kg **Total Mass** 3970 kg 2410 kg 1155 kg **Power Estimate** 5 years 10 years 20 years 15 KW / 3 KW 35 KW / 7 KW 65 KW / 13 KW RF Power (peak/avg) Radar Overall Power 20% 40% 70% Efficiency Radar DC Power 15 KW 17 KW 19 KW Spacecraft DC Power 5 KW 2 KW 1 KW Total Power 20 KW 19 KW 20 KW



Geo-stationary SAR: continental access

The tiny orbit still allows for a synthetic aperture with metric resolution:

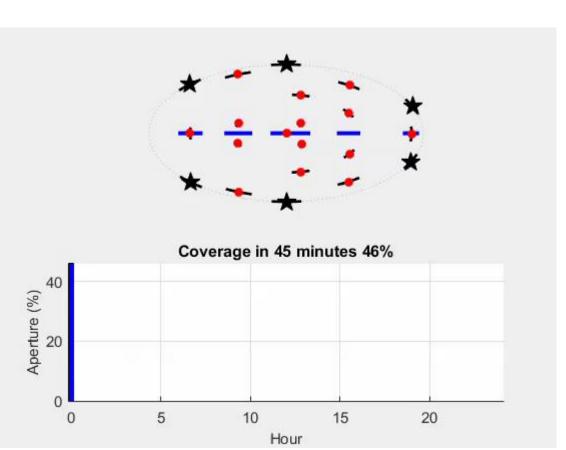
- Long integration times allows for moderate power
- Immediate data download and exploitation
- \succ Continuous trade-off: resolution \leftrightarrow image time
- Compatible with COMSAT (can be hosted)
- Safer orbit than LEO-SAR


Geo-stationary SAR: the MIMO swarm

Each of the N sensors transmits one signal and receives N.

The coherent MIMO combination leads to N×(N-1)/2 phase centers

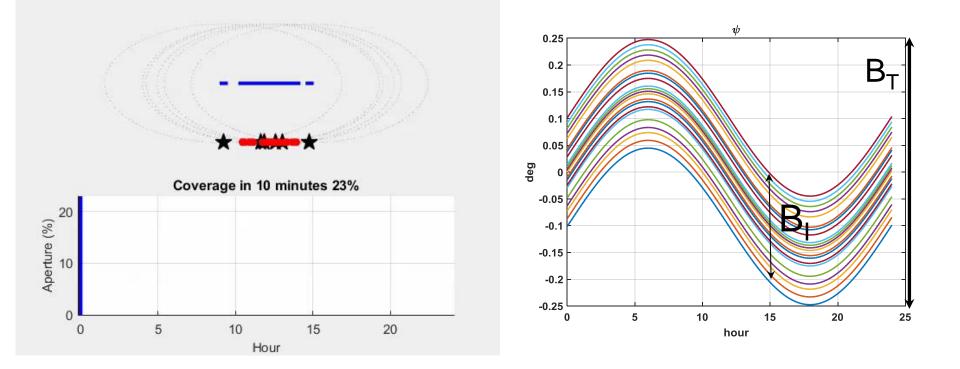
For geostationary SAR, this reduces the image and revisit time


Scalability and evolution

Resolution is 1% - 15% of full Inteferometric revisit: 12 h

Resolution is: 5% - 40% of full Power: ×4 Inteferometric revisit: 1 h + 2 h + 12 h

Advanced Radar Geosynchronous Observation System ARGOS



Six mini-satellites, fitting in a single Ariane launch.

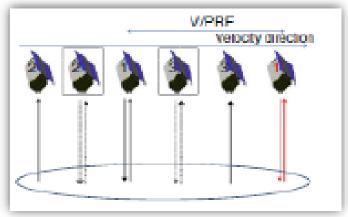
A. Monti Guarnieri, O. Bombaci T. F. Catalano C. Germani C. Koppel F. Rocca G. Wadge ARGOS: a Fractioned Geosynchronous SAR, submitted to Acta Astronauta, EO Distributed Mission, special issue

Swarm design: the sliding configuration

The bandwidth spanned in 10', B_I , is a fraction of the total, B_T , spanned in one day. At the end of the day we have the full resolution image.

Fractioning the antenna

+ The power is fractioned into N active sensors

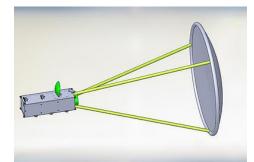

+ The antenna area is fractioned in <u>N active + M passive sensors</u>

 \rightarrow The total gain is (N²+M)

The number of pixels (ratio between coverage and resolution) increases with the square of the number of sensors

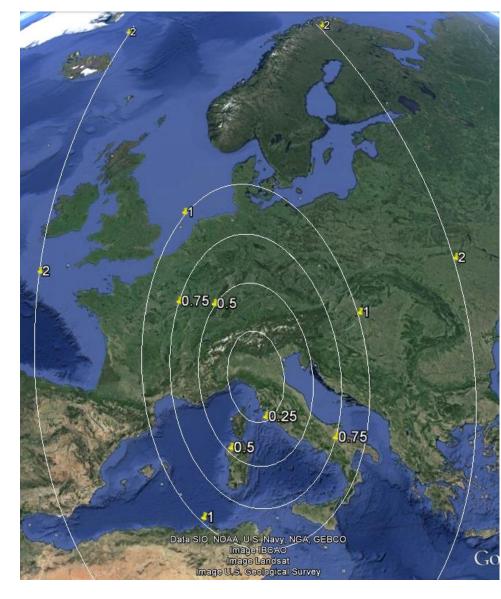
$$SNR_{MONO} = \frac{P_t GA \eta_T}{\left(4\pi R^2\right)^2} \frac{\sigma^0 \rho_{az} \rho_{rg}}{\sin \theta} \frac{T_s}{N_0}$$


$$SNR_{N_MIMO} = N^2 SNR_{MONO}$$


P-Band Distributed SAR

Giancarmine Fasano, Marco D'Errico, Giovanni Alberti, Stefano Cesare, and Gianfranco Sechi

Fractioning the antenna: nano-pico-mini SAR


Manufac	Name	Antenna	Appl.	Rng. res	Weigth	Power	Freq
MSAR	NanoSAR-B	1.1×0.2	UAV	< 0.3 m	1 kg	15 W	Ku,X,UHF
Barnard	miniSAR	0.3×0.1	UAV		1 kg	15 W	Х
	Mini-SAR	0.9×1.5	Moon	2 MHz	9 kg	11 W	S
Thales	I-Master		UAV	< 0.3 m	30 kg	~ 100 W	Ku
Selex	PicoSAR		UAV	< 1 m	10 kg	~ 100 W	Х

Expandable large aperture antenna, 1 m Folded volume is under 1/4 of the material volume [**Nslcomm**]

Issues and technological challenges

- Electric propulsion for constellation keeping & redesign
- Flexible beam pointing for continental access
- Separation of iso-frequency signals in (Doppler, time) space
- On ground synchronization
- Use of the RADAR pulse for data download

Design & performance examples


To achieve SNR = 1 (far range): $N_{sat}^{2} \times P_{T} \times L^{2}_{ant} \times T_{imm} \times \frac{\rho_{a} \times \rho_{r}}{D_{a} \times D_{r}} =$ $20^{2} \times 50 \text{ W} \times 1.5^{2} \text{ m} \times 15' \times \frac{10m \times 10m}{450km \times 720km}$ 12 Mpixel

#	Ant. diam	Tx Power	lmage Time	Az res.	Rng res.	Notes
1	6 m	300 W	7 hours	10 m	3 m	GeoSTARe*
6	5 m	300 W	30 min	3 m	3 m	ARGOS
20	1.5 m	50 W	15 min	10 m	10 m	Microsat

(*) GeoSTARe is ESA contracted study, leader SES. To proposed for next EE9 call

Conclusions

The proposed system combines three concepts:

- The <u>geosynchronous SAR</u> concept, studied since '78, is much too demanding (but for the geo-stationary case)
- The <u>MIMO & swarm LEO SAR</u> have been proposed for extended swath, tomography and DEM generation (Cartwheel, TanDEM-X, HRWS, ...)
- The <u>geo-stationary swarm SAR</u> is an unique system using current technologies and providing continuous capabilities in imaging, water vapor and deformation